Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density.

نویسندگان

  • Ahmed Al-Haddad
  • Chengliang Wang
  • Haoyuan Qi
  • Fabian Grote
  • Liaoyong Wen
  • Jörg Bernhard
  • Ranjith Vellacheri
  • Samar Tarish
  • Ghulam Nabi
  • Ute Kaiser
  • Yong Lei
چکیده

Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degenerate Resistive Switching and Ultrahigh Density Storage in Resistive Memory

We show that, in tantalum oxide resistive memories, activation power provides a multi-level variable for information storage that can be set and read separately from the resistance. These two state variables (resistance and activation power) can be precisely controlled in two steps: (1) the possible activation power states are selected by partially reducing resistance, then (2) a subsequent par...

متن کامل

3D Vertical Dual-Layer Oxide Memristive Devices for Neuromorphic Computing

Dual-layer resistive switching devices with horizontal W electrodes, vertical Pd electrodes and WOx switching layer formed at the sidewall of the horizontal electrodes have been fabricated and characterized. The devices exhibit well-characterized analog switching characteristics and small mismatch in electrical characteristics for devices formed at the two layers. The three-dimensional (3D) ver...

متن کامل

Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates

Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots o...

متن کامل

Low Power March Memory Test Algorithm for Static Random Access Memories (TECHNICAL NOTE)

Memories are most important building blocks in many digital systems. As the Integrated Circuits requirements are growing, the test circuitry must grow as well. There is a need for more efficient test techniques with low power and high speed. Many Memory Built in Self-Test techniques have been proposed to test memories. Compared with combinational and sequential circuits memory testing utilizes ...

متن کامل

High-density magnetoresistive random access memory operating at ultralow voltage at room temperature

The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 35  شماره 

صفحات  -

تاریخ انتشار 2016